PyTorch
Installation
根据OS和cuda选择适配的torch版本
https://pytorch.org/get-started/previous-versions/
pip
安装最新版
pip install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple
指定版本(preffered)
创建名为pytorch310的虚拟环境
conda create -n pytorch310 python==3.10
激活环境
conda activate pytorch310
设置清华源,加速安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
指定版本安装
pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1+cu118 -f https://download.pytorch.org/whl/torch_stable.html
conda
添加清华镜像源
# 若不含有`~/.condarc`,生成它
ls ~/.condarc || conda config --set show_channel_urls yes
# 之后配置镜像源(南科大提供的额外软件包镜像可以加速安装CUDA版Pytorch)
tee ~/.condarc > /dev/null << EOF
channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
deepmodeling: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
nvidia: https://mirrors.sustech.edu.cn/anaconda-extra/cloud
envs_dirs:
- your-path/anaconda3/envs # 替换为您的路径(另外,若安装的是miniconda3,请自行替换),不设置此项有可能安装在`~/.conda/envs`中
EOF
安装最新版
conda install pytorch torchvision torchaudio cudatoolkit=10.2
指定版本
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4 cudatoolkit=10.2
Tutorial
- pytorch examples
- pytorch tutorials
- pytorch模型性能分析和优化: weixin
- pytorch handbook: [Github:zh-cn]
- datawhale/thorough-pytorch: [Github:zh-cn]
- 杂七杂八的收集DL相关的东西: [Github:en]
Framework
- pytorch-lightning: Pretrain, finetune and deploy AI models on multiple GPUs, TPUs with zero code changes.
Visualization
- wandb: 🔥 A tool for visualizing and tracking your machine learning experiments. This repo contains the CLI and Python API.
- PyTorch tensorboard: How to use tensorboard in PyTorch.
- SwanLab: ⚡️SwanLab: track and visualize all the pieces of your machine learning pipeline. 跟踪与可视化你的机器学习全流程